Что такое шим
Содержание:
- Схемы источников питания
- ШИМ- регулятор постоянного напряжения на простой логике
- Особенности процесса изготовления
- Примеры симисторов
- Реле
- Заключение
- Полезные источники
- Принцип импульсного регулирования
- Практические советы
- Шим регулятор на таймере ne555
- Простой ШИМ-регулятор мощности своими руками
- Схема регулируемой электронной нагрузки
- Область применения
- Широтно-импульсное регулирование ШИР
- Доработка схемы
- Схема генератора ШИМ на ATtiny
- Простейшая ШИМ схема с использованием распространенных операционных усилителей
Схемы источников питания
ШИМ- регулятор постоянного напряжения на простой логике
Необходимость регулировки постоянного напряжения для питания мощных инерционных нагрузок чаще всего возникает у владельцев автомобилей и другой авто-мото техники. Например, появилось желание плавно менять яркость ламп освещения салона, габаритных огней, автомобильных фар или вышел из строя узел регулирования оборотов вентилятора автомобильного кондиционера, а замены нет. Осуществить такое желание иногда нет возможности из-за большого тока потребления этими устройствами — если устанавливать транзисторный регулятор напряжения, компенсационный или параметрический, на регулирующем транзисторе будет выделяться очень большая мощность, что потребует установки больших радиаторов или введения принудительного охлаждения с помощью малогабаритного вентилятора от компьютерных устройств.
Выходом из положения является применение широтно — импульсных схем, управляющих мощными полевыми силовыми транзисторами MOSFET. Эти транзисторы могут коммутировать очень большие токи ( до 160А и более) при напряжении на затворе 12 — 15 В. Сопротивление открытого транзистора очень мало, что позволяет заметно снизить рассеиваемую мощность. Схемы управления должны обеспечивать разность напряжений между затвором и истоком не менее 12 … 15 В, в противном случае сопротивление канала сильно увеличивается и рассеиваемая мощность значительно возрастает, что может привести перегреву транзистора и выходу его из строя. Для широтно — импульсных автомобильных низковольтных регуляторов выпускаются специализированные микросхемы , например U6080B … U6084B, L9610, L9611, которые содержат узел повышения выходного напряжения до 25 -30 В при напряжении питания 7 -14 В, что позволяет включать выходной транзистор по схеме с общим стоком, чтобы можно было подключать нагрузку с общим минусом, но достать их практически невозможно. Для большинства нагрузок, которые потребляют ток не более 10А и не могут вызвать просадку бортового напряжения можно использовать простые схемы без дополнительного узла повышения напряжения.
Первый ШИМ регулятор собран наинверторах логической КМОП микросхемы. Схема представляет собой генератор прямоугольных импульсов на двух логических элементах, в котором за счёт диодов раздельно меняется постоянная времени заряда и разряда частотозадающего конденсатора, что позволяет изменять скважность выходных импульсов и значение эффективного напряжения на нагрузке
В схеме можно использовать любые инвертирующие КМОП элементы, например К176ПУ2, К561ЛН1, а также любые элементы И, ИЛИ-НЕ, например К561ЛА7, К561ЛЕ5 и подобные, соответственно сгруппировав их входы. Полевой транзистор может быть любым изMOSFET, которые выдерживают максимальный ток нагрузки, но желательно использовать транзистор с как можно большим максимальным током, т.к. у него меньшее сопротивление открытого канала, что уменьшает рассеиваемую мощность и позволяет использовать радиатор меньшей площади. Достоинство ШИМ-регулятора на микросхеме К561ЛН2 — простота и доступность элементов, недостатки — диапазон изменения выходного напряжения чуть меньше 100% и невозможно доработать схему с целью введения дополнительных режимов, например плавного автоматического увеличения или понижения напряжения на нагрузке, т.к. регулирование производится путём изменения сопротивления переменного резистора , а не изменением уровня управляющего напряжения.
Гораздо лучшими характеристиками обладает вторая схема, но количество элементов в ней чуть больше.
Регулировка эффективного значения напряжения на нагрузке от 0 до 12 В производится изменением напряжения на управляющем входе от 8 до 12 В. Диапазон регулировки напряжения практически 100%. Максимальный ток нагрузки полностью определяется типом силового полевого транзистора и может быть очень значительным. Так как выходное напряжение пропорционально входному управляющему напряжению, схема может использоваться как составная часть системы регулирования , например системы поддержания заданной температуры, если в качестве нагрузки использовать нагреватель, а датчик температуры подключить к простейшему пропорциональному регулятору, выход которого подключается к управляющему входу устройства. Описанные устройства имеют в основе несимметричный мультивибратор, но ШИМ регулятор можно построить на микросхеме ждущего мультивибратора
Особенности процесса изготовления
Нагрузка нагревательного элемента составляет Вт.
Вход — это первичная цепь, в которой устанавливается постоянное сопротивление.
В обычных для приведения какой-либо электрический механизм в действие используются контакты, которые периодически замыкаются и размыкаются.
Выходная мощность порядка Вт. Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках.
Рекомендации о выборе кулеров приводятся в технической документации на конкретное твердотельное реле, поэтому давать универсальные советы нельзя. Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей.
Поэтому существует максимально возможная задержка выключения между удалением входного сигнала и отключением тока нагрузки в один полупериод. Между цепями управления и нагрузкой качественная изоляция. Эти реле, работающие бесшумно, являются хорошей заменой контакторам и пускателям. Такой же принцип регулировки используется в бытовых диммерах для освещения. Когда сигнал входного напряжения постоянного тока удаляется, выход не отключается внезапно, так как после срабатывания проводимости тиристор или триак, используемый в качестве переключающего устройства, остается включенным в течение оставшейся части полупериода, пока токи нагрузки не упадут ниже удерживающих устройств тока, в этот момент он выключается.
Видео: тестирование твердотельного реле. Нужно выделить такие свойства твердотельных реле: При помощи оптической развязки обеспечивается изоляция различных цепей электронного устройства. В твердотельных моделях эту роль выполняют тиристоры, транзисторы и симисторы.
С его помощью происходит притягивание контактов. Защита может находиться как внутри корпуса реле, так и отдельно
Обратите внимание на то, что у симисторов выводы обычно неоднозначно определяются, поэтому их нужно заранее проверить. Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор
В этом примере подойдет любое предпочтительное значение резистора между Ом и Ом.
Твердотельное реле вместо контактора.
Примеры симисторов
Примеры симисторов приведены в таблице ниже. Здесь — ток удержания,
— максимальный ток, — максимальное напряжение,
— отпирающий ток.
Модель | ||||
---|---|---|---|---|
BT134-600D | 10 мА | 4 А | 600 В | 5 мА |
MAC97A8 | 10 мА | 0,6 А | 600 В | 5 мА |
Z0607 | 5 мА | 0,8 А | 600 В | 5 мА |
BTA06-600C | 25 мА | 6 А | 600 В | 50 мА |
Реле
С точки зрения микроконтроллера, реле само является мощной нагрузкой,
причём индуктивной. Поэтому для включения или выключения реле нужно
использовать, например, транзисторный ключ. Схема подключения и также
улучшение этой схемы было рассмотрено ранее.
Реле подкупают своей простотой и эффективностью. Например, реле
HLS8-22F-5VDC — управляется напряжением 5 В и способно коммутировать
нагрузку, потребляющую ток до 15 А.
Главное преимущество реле — простота использования — омрачается
несколькими недостатками:
- это механический прибор и контакты могу загрязниться или даже привариться друг к другу,
- меньшая скорость переключения,
- сравнительно большие токи для переключения,
- контакты щёлкают.
Часть этих недостатков устранена в так называемых твердотельных
реле. Это,
фактически, полупроводниковые приборы с гальванической развязкой,
содержащие внутри полноценную схему мощного ключа.
Заключение
Таким образом, в арсенале у нас достаточно способов управления
нагрузкой, чтобы решить практически любую задачу, которая может
возникнуть перед радиолюбителем.
Полезные источники
- Хоровиц П., Хилл У. Искусство схемотехники. Том 1. — М.: Мир, 1993.
- Управление мощной нагрузкой переменного тока
- Управление мощной нагрузкой постоянного тока. Часть 1
- Управление мощной нагрузкой постоянного тока. Часть 2
- Управление мощной нагрузкой постоянного тока. Часть 3
- Щелкаем реле правильно: коммутация мощных нагрузок
- Управление мощной нагрузкой переменного тока
- Управление MOSFET-ами #1
- Современные высоковольтные драйверы MOSFET- и IGBT-транзисторов
- Ключ на плечо! – особенности применения высоковольтных драйверов производства IR
Принцип импульсного регулирования
Основными элементами любого типа импульсного регулятора мощности являются полупроводниковые ключи – транзисторы или тиристоры. В простейшем виде схема импульсного источника питания имеет следующий вид. Источника постоянного напряжения Uип ключом K подсоединяется к нагрузке Н. Ключ К переключается с определенной частотой и остается во включенном состоянии определенную длительность времени. С целью упрощения схемы я на ней не изображаю другие обязательные элементы. В данном контексте нас интересует только работа ключа К.
Чтобы понять принцип ШИМ воспользуемся следующим графиком. Разобьем ось времени на равные промежутки, называемые периодом T. Теперь, например половину периода мы будем замыкать ключ K. Когда ключ замкнут, к нагрузке Н подается напряжение от источника питания Uип. Вторую часть полупериода ключа находится в закрытом состоянии. А потребитель останется без питания.
Время, в течение которого ключ замкнут, называется временем импульса tи. А время длительности разомкнутого ключа называют временем паузы tп. Если измерить напряжение на нагрузке, то оно будет равно половине Uип.
Среднее значение напряжения на нагрузке можно выразить следующей зависимостью:
Uср.н = Uип tи/T.
Отношение времени импульса tи к периоду T называют коэффициентом заполнения D
А величина, обратная ему называется скважностью:. S = 1/D = T/tи
S = 1/D = T/tи.
На практике удобнее пользоваться коэффициентом заполнения, который зачастую выражают в процентах. Когда транзистор полностью открыт на протяжении всего времени, то коэффициент заполнения D равен единице или 100 %.
Если D = 50 %, то это означает, что половину времени за период транзистор находится в открытом состоянии, а половину в закрытом. В таком случае форма сигнала называется меандр.Следовательно, изменяя коэффициент D от 0 до единицы или до 100 % можно изменять величину Uср.н от 0 до Uип:
Uср.н = Uип∙D.
А соответственно регулировать и величину подводимой мощности:
Pср.н = Pип∙D.
Практические советы
Транзистор VT1 должен подбираться в зависимости от мощности нагрузки. Например, для изменения яркости одноваттного светодиода достаточно будет биполярного транзистора с максимально допустимым током коллектора 500 мА.
Управление яркостью светодиодной ленты должно осуществляться от источника напряжения +12 В и совпадать с её напряжением питания. В идеале регулятор должен питаться от стабилизированного блока питания, специально предназначенного для ленты.
Нагрузка в виде отдельных мощных светодиодов запитывается иначе. В этом случае источником питания диммера служит стабилизатор тока (его еще называют драйвер для светодиода). Его номинальный выходной ток должен соответствовать току последовательно включенных светодиодов.
Шим регулятор на таймере ne555
Потребовалось мне сделать регулятор скорости для пропеллера. Чтобы дым от паяльника сдувать, да морду лица вентилировать. Ну и, для прикола, уложить все в минимальную стоимость.
Проще всего маломощный двигатель постоянного тока, конечно, регулировать переменным резистором, но найти резюк на такой малый номинал, да еще нужной мощности это надо сильно постараться, да и стоить он будет явно не десять рублей. Поэтому наш выбор ШИМ + MOSFET.
Ключ я взял IRF630. Почему именно этот MOSFET? Да просто у меня их откуда то завелось штук десять. Вот и применяю, так то можно поставить что либо менее габаритное и маломощное. Т.к.
ток тут вряд ли будет больше ампера, а IRF630 способен протащить через себя под 9А. Зато можно будет сделать целый каскад из вентиляторов, подсоединив их к одной крутилке — мощи хватит
Теперь пришло время подумать о том, чем мы будем делать ШИМ.
Сразу напрашивается мысль — микроконтроллером. Взять какой-нибудь Tiny12 и сделать на нем. Мысль я эту отбросил мгновенно.
- Тратить такую ценную и дорогую деталь на какой то вентилятор мне западло. Я для микроконтроллера поинтересней задачу найду
- Еще софт под это писать, вдвойне западло.
- Напряжение питания там 12 вольт, понижать его для питания МК до 5 вольт это вообще уже лениво
- IRF630 не откроется от 5 вольт, поэтому тут пришлось бы еще и транзистор ставить, чтобы он подавал высокий потенциал на затвор полевика. Нафиг нафиг.
Остается аналоговая схема. А что, тоже неплохо. Наладки не требует, мы же не высокоточный девайс делаем. Детали тоже минимальные. Надо только прикинуть на чем делать.
Операционные усилители можно отбросить сразу. Дело в том, что у ОУ общего назначения уже после 8-10кГц, как правило, предельное выходное напряжение начинает резко заваливаться, а нам надо полевик дрыгать.
Да еще на сверхзвуковой частоте, чтобы не пищало.
ОУ лишенные такого недостатка стоят столько, что на эти деньги можно с десяток крутейших микроконтроллеров купить. В топку!
Остаются компараторы, они не обладают способностью операционника плавно менять выходное напряжение, могут только сравнивать две напруги и замыкать выходной транзистор по итогам сравнения, но зато делают это быстро и без завала характеристики.
Пошарил по сусекам и компараторов не нашел. Засада! Точнее был LM339, но он был в большом корпусе, а впаивать микросхему больше чем на 8 ног на такую простую задачу мне религия не позволяет. В лабаз тащиться тоже было влом.
Что делать?
И тут я вспомнил про такую замечательную вещь как аналоговый таймер — NE555. Представляет собой своеобразный генератор, где можно комбинацией резисторов и конденсатором задавать частоту, а также длительность импульса и паузы.
Как это работает
Если не вникать глубоко в структуру таймера 555, то несложно. Грубо говоря, таймер следит за напряжением на конденсаторе С1, которое снимает с вывода THR (THRESHOLD — порог). Как только оно достигнет максимума (кондер заряжен), так открывается внутренний транзистор.
Который замыкает вывод DIS (DISCHARGE — разряд) на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю (полный разряд) система перекинется в противоположное состояние — на выходе 1, транзистор закрыт.
Конденсатор начинает снова заряжаться и все повторяется вновь.
Заряд конденсатора С1 идет по пути: «R4->верхнее плечо R1 ->D2«, а разряд по пути: D1 -> нижнее плечо R1 -> DIS. Когда мы крутим переменный резистор R1 то у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе.
Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1.
Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.
Простой ШИМ-регулятор мощности своими руками
Вам понадобится
- — микросхема NE555
- — два резистора по 1 кОм
- — резистор 100 Ом
- — переменный резистор 50 кОм
- — три диода 1N4148
- — конденсатор 2,7 нФ
- — конденсатор 1 нФ
- — транзистор IRFZ44
Инструкция
Первым делом необходимо приготовить все необходимые детали для сборки схемы. Желательно точно придерживаться точных номиналов, но если найти их не удалось — не беда, можно ставить самые ближайшие. Диоды 1N4148 можно заменить на КД522 или 1N4007, транзистор IRFZ44 можно смело поменять на IRF730, IRF630 или другие аналогичные.
Когда все детали собраны, можно приступить к изготовлению печатной платы, на которой будет собрана схема. Изготавливается она методом ЛУТ, т.к. это самый доступный и простой метод изготовления печатных плат в домашних условиях.
Сам рисунок можно нарисовать в компьютерных программах, например, Sprint Layout, либо от руки лаком. Рисунок должен полностью соответствовать схеме, только тогда плата будет работоспособна. Соседние дорожки не должны проходить слишком близко друг к другу, иначе не избежать замыкания.
После нанесения на текстолит защитного слоя дорожек, плату можно вытравливать. Для этого в плоскую пластиковую ёмкость наливаем стакан воды, насыпаем столовую ложку лимонной кислоты и чайную ложку соли. Перемешиваем, кладём плату, примерно через 20-30 минут лишняя медь сойдёт с платы, а раствор станет зеленоватым.
Теперь осталось лишь снять защитный слой растворителем, просверлить отверстия, залудить дорожки, и плата готова.
Когда плата готова, можно запаивать детали. Сначала на плату устанавливаются резисторы, диоды, затем конденсаторы, и уже в последнюю очередь транзистор и микросхема.
Провода для подключения нагрузки и питания удобнее всего вывести через клеммник. После завершения пайки обязательно нужно проверить правильность монтажа, смыть остатки флюса и прозвонить соседние дорожки на замыкание.
ШИМ-регулятор готов, можно подключать его к источнику питания, нагрузке и проверять работу.
Обратите внимание
Полевые транзисторы довольно чувствительны к статике, поэтому во время установки транзистора на плату желательно соединить его выводы полоской из фольги. Тогда они будут замкнуты и не пострадают от статики.
Полезный совет
Перед установкой на плату каждой детали желательно её прозвонить, убедится в исправности. Ни в коем случае нельзя торопиться, ведь даже малейшая ошибка может привести к тому, что регулятор не заработает.
Схема регулируемой электронной нагрузки
Схема настолько проста, что практически любой желающий может собрать ее, и думаю, она будет незаменима в мастерской каждого радиолюбителя.
Операционный усилитель LM358 делает так, чтобы падение напряжения на R5 было равно значению напряжения заданного с помощью потенциометров R1 и R2. Потенциометр R2 предназначен для грубой подстройки, а R1 для точной.
Резистор R5 и транзистор VT3 (при необходимости и VT4) необходимо подобрать соответствующими максимальной мощности, которой мы хотим нагрузить наш блок питания.
Электронная нагрузка 60Вт Напряжение: до 30В, ток: 0…9.9А, ЖК-дисплей…
Подбор транзистора
В принципе подойдет любой N-канальный MOSFET транзистор. От его характеристики будет зависеть рабочее напряжение нашей электронной нагрузки. Параметры, которые должны заинтересовать нас — большой Ik (ток коллектора) и Ptot (рассеиваемая мощность). Ток коллектора — это максимальный ток, который может пустить через себя транзистор, а рассеиваемая мощность — это мощность, которую транзистор может отвести в виде тепла.
В нашем случае транзистор IRF3205 теоретически выдерживает ток до 110А, однако его максимальная мощность рассеивания около 200 Вт. Как нетрудно подсчитать, максимальный ток 20А мы можем задать при напряжении до 10В.
Для того чтобы улучшить эти параметры, в данном случае используем два транзистора, что позволит рассеивать 400 Вт. Плюс ко всему нам будет нужен мощный радиатор с принудительным охлаждением, если мы действительно собираемся выжать максимум.
Транзисторы BC327 и BC337 — повторители для MOSFET транзисторов, предназначены для обеспечения быстрой перезарядки затвора. Конденсатор С1 предназначен для подавления возбуждений (при тестировании импульсных БП).
Подбор резистора
При нагрузке 20А, резистор R5 должен иметь мощность 40 Вт и хорошо охлажден (20 A * 0,1 Ом = 2 В; 2 В * 20 A = 40 Вт). Лучше использовать резистор в металлическом корпусе с возможностью установки на радиатор. Можно также соединить параллельно несколько резисторов так, чтобы получить соответствующую мощность и сопротивление.
Напряжение питания схемы – нестабилизированное 15В, хотя оно зависит от параметра Vgs (напряжение затвора) нашего транзистора, при котором он полностью откроется. Как правило, не нужно больше 10В. Поскольку при более высоком напряжении стабилизатора DA1 должен быть оснащен радиатором.
Можно использовать транзисторы (VT3 и VT4) с логическим уровнем управления, то есть такой, который управляется напряжением TTL. Тогда напряжение питания в 7В будет достаточно. На этом заканчивается описание основной части электронной нагрузки.
При желании в схему можно добавить амперметр, но это не обязательно. Тем не менее, дополнив схему амперметром мы освободим свой мультиметр, который будет необходим для настройки. Измерительный блок выполнен на популярной микросхеме ICL7107 и четырех 7-сегментных светодиодных индикаторов по классической схеме.
Настройка
Перед использованием нужно откалибровать показания нашего амперметра. Для этого подключаем электронную нагрузку к блоку питания и в разрыв цепи включаем мультиметр (диапазон 10А). После прогрева схемы, потенциометром R9 устанавливаем такое же показание, как на мультиметре.
Другие области применения устройства
Регулируемая электронная нагрузка подойдет не только для тестирования блоков питания. Устройство также может быть использовано для тестирования батарей, аккумуляторов. С помощью его удобно измерять и рассчитывать емкость за счет стабилизации тока, который всегда будет поддерживаться на заданном уровне.
Область применения
С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.
Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана здесь.
Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.
Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.
Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.
ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным
Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:
обеспечивает режим плавного пуска преобразователя; ограничивает амплитуду и скважность управляющих импульсов; контролирует уровень входного напряжения; защищает от короткого замыкания и превышения температуры силового ключа; при необходимости переводит устройство в дежурный режим
Широтно-импульсное регулирование ШИР
В западной литературе практически не различают понятия широтно-импульсного регулирования ШИР и широтно-импульсной модуляции ШИМ. Однако у нас различие между ними все же существует.
Сейчас во многих микросхемах, особенно применяемых в DC-DC преобразователях, реализован принцип ШИР. Но при этом их называют ШИМ контроллерами. Поэтому теперь различие в названии между этими двумя способами практически отсутствует.
В любом случае для формирования определенной длительности импульса, подаваемого на базу транзистора и открывающего последний, применяют источники опорного и задающего напряжения, а также компаратор.Рассмотрим упрощенную схему, в которой аккумуляторная батарея GB питает потребитель Rн импульсным способом посредством транзистора VT. Сразу скажу, что в данной схеме я специально не использовал такие элементы, необходимые для работы схемы: конденсатор, дроссель и диод. Это сделано с целью упрощения понимания работы ШИМ, а не всего преобразователя.
Упрощенно, компаратор имеет три вывода: два входа и один выход. Компаратор работает следующим образом. Если величина напряжения на входном выводе «+» (неинвертирующий вход) выше, чем на входе «-» (инвертирующий вход), то на выходе компаратора будет сигнал высокого уровня. В противном случае – низкого уровня.
В нашем случае, именно сигнал высокого уровня открывает транзистор VT. Рассмотрим, как формируется необходимая длительность времени импульса tи. Для этого воспользуемся следующим графиком.
При ШИР на одни вход компаратора подается сигнал пилообразной формы заданной частоты. Его еще называют опорным. На второй вход подается задающее напряжение, которое сравнивается с опорным. В результате сравнения на выходе компаратора формируется импульс соответствующей длительности.
Если на неинверитирующем входе компаратора опорный сигнал, то сначала будет идти пауза, а затем импульс. Если на неинвертирующий вход подать задающий сигнал, то сначала будет импульс, затем пауза.
Таким образом, изменяя значение задаваемого сигнала, можно изменять коэффициент заполнения, а соответственно и среднее напряжение на нагрузке.
Частоту опорного сигнала стремятся сделать максимальной, чтобы снизить параметры дросселей и конденсаторов (на схеме не показаны). Последнее приводит к снижению массы и габаритов импульсного блока питания.
Доработка схемы
Если вход схемы подключен к push-pull выходу, то особой доработки не
требуется. Рассмотрим случай, когда вход — это просто выключатель,
который либо подтягивает базу к питанию, либо оставляет её «висеть в
воздухе». Тогда для надёжного закрытия транзистора нужно добавить ещё
один резистор, выравнивающий напряжение между базой и эмиттером.
Кроме того, нужно помнить, что если нагрузка индуктивная, то
обязательно нужен защитный диод. Дело в том, что энергия, запасённая
магнитным полем, не даёт мгновенно уменьшить ток до нуля при
отключении ключа. А значит, на контактах нагрузки возникнет напряжение
обратной полярности, которое легко может нарушить работу схемы или
даже повредить её.
Совет касательно защитного диода универсальный и в равной степени
относится и к другим видам ключей.
Если нагрузка резистивная, то диод не нужен.
В итоге усовершенствованная схема принимает следующий вид.
Резистор R2 обычно берут с сопротивлением, в 10 раз большим, чем
сопротивление R1, чтобы образованный этими резисторами делитель не
понижал слишком сильно напряжение между базой и эмиттером.
Для нагрузки в виде реле можно добавить ещё несколько
усовершенствований. Оно обычно кратковременно потребляет большой ток
только в момент переключения, когда тратится энергия на замыкание
контакта. В остальное время ток через него можно (и нужно) ограничить
резистором, так как удержание контакта требует меньше энергии.
Для этого можно применить схему, приведённую ниже.
В момент включения реле, пока конденсатор C1 не заряжен, через него
идёт основной ток. Когда конденсатор зарядится (а к этому моменту реле
перейдёт в режим удержания контакта), ток будет идти через резистор
R2. Через него же будет разряжаться конденсатор после отключения реле.
Ёмкость C1 зависит от времени переключения реле. Можно взять,
например, 10 мкФ.
С другой стороны, ёмкость будет ограничивать частоту переключения
реле, хоть и на незначительную для практических целей величину.
Схема генератора ШИМ на ATtiny
Принцип работы схемы: после подачи питания на выходе генератора (разъем CON2) формируется прямоугольный сигнал с частотой 10 кГц, заполнением 50% и уровнем, зависящим от значения напряжения питания Vcc. Чтобы уменьшить / увеличить заполнение сигнала на 1%, кратко нажмите кнопку микрик S1 (-) / S2 (+) (длительность нажатия менее 250 мс). Нажатие и удерживание кнопки S1 / S2 в течение более длительного времени приведет к непрерывному уменьшению / увеличению значения заполнения со скоростью примерно 4% в секунду до тех пор, пока не будет достигнуто предельное значение, то есть 0% или 100%. Установка 0% / 100% заполнения вызовет непрерывную логику низкого / высокого уровня (GND / Vcc) на выходе генератора.
Чтобы изменить частоту сигнала ШИМ, нажмите одновременно кнопки S1 и S2 на короткое время (менее 1 секунды). Тогда частота будет меняться до следующего значения в таком порядке: 10/20/40/80/1,25/2,5/5 кГц по кругу. Одновременное нажатие и удерживание кнопок S1 и S2 будет непрерывно изменять значение частоты до тех пор, пока кнопки не будут отпущены. После каждого изменения частоты начальное значение заполнения сигнала всегда составляет 50% (независимо от предыдущей настройки).
Транзистор полевой T1 (MOSFET-P) защищает схему от обратного подключения полярности напряжения питания
Была специально выбрана модель Si2305, которая начинает работать при напряжении на затворе Vgs от 1,8 В — это важно, если схема будет работать от низкого напряжения. В качестве замены для T1 можете использовать следующие транзисторы: DMP1045, FDN306, Si2315, IRLML6401
При отсутствии подходящего полевого транзистора можно вообще отказаться от этой защиты — тогда нужно замкнуть площадки «D» и «S» на плате.
Кварцевый резонатор X1 нужен для работы микроконтроллера, благодаря чему получается выход с достаточно точной и стабильной частотой. Также возможно синхронизировать микроконтроллер с его внутренним RC-генератором с номинальной частотой 8 МГц. Преимущество этого решения заключается в том, что не нужно устанавливать резонатор X1 и конденсаторы C3 / C4, но большим недостатком будет неточная и нестабильная частота выходного сигнала.
Конденсаторы С1 и С2 фильтруют напряжение питания. Резистор R2 ограничивает ток, снимаемый непосредственно с вывода PB1 микроконтроллера, предотвращает его повреждение в случае короткого замыкания на выходе CON2.
При программировании не забудьте правильно установить фузы:
- Когда микроконтроллер работает с кварцевым резонатором X1: FL (низкий уровень фуза): $ FF, FH (высокий уровень): $ DF, FE (расширенный): $ FF, LB (блокирующие биты): $ FF.
- Когда микроконтроллер будет синхронизирован с внутренним RC-генератором: FL (низкий уровень): $ E2, FH (высокий уровень): $ DF, FE (расширенный): $ FF, LB (блокирующие биты): $ FF.
Генератор может питаться постоянным напряжением 2,7 — 5,5 В от блока питания или от аккумуляторов (например от одного 18650 Li элемента). Потребляемый ток составляет максимум 2,5 / 5 мА (сигнал 80 кГц / 99%, выход генератора не загружен). Собран ШИМ генератор на односторонней плате размером 40 x 40 мм.
Простейшая ШИМ схема с использованием распространенных операционных усилителей
ШИМ схема — представленный здесь вариант построения электронных регуляторов напоминает ранее описанную схему, но отличается от нее большей простотой. Схема формирует прямоугольные импульсы, коэффициент заполнения которых изменяется между 0 и 100% в соответствии с входным сигналом постоянного напряжения, изменяющимся от 0 до 5 В (Рисунок 1).
Как и в вышеупомянутой ШИМ схеме, частота не постоянна (Рисунок 2), но схема настолько проста, что в определенных приложениях может быть полезна.
Благодаря гистерезису, создаваемому резистором R2, и RC-цепочке с постоянной времени R3C1 компаратор превращается в генератор прямоугольных импульсов (Рисунок 3).
Напряжение V- на инвертирующем входе колеблется между двумя пороговыми уровнями VTH и VTL. Если предположить, что R2 >> R1, то напряжение V+ всегда будет очень близким к VIN. Цепь R3C1 усредняет выходной сигнал VOUT, a постоянное напряжение на входе V- пропорционально коэффициенту заполнения VOUT. Замкнутая петля обратной связи стремится сделать напряжение V- равным V+, поэтому коэффициент заполнения импульсов на выходе VOUT пропорционален VIN.
Напряжение VOH определяет как высокий уровень выходного сигнала, так и диапазон полной шкалы управляющего напряжения VIN. Оно может иметь любое значение, не выходящее из диапазона допустимых синфазных входных напряжений компаратора. Математический анализ ШИМ схемы будет прост, если, учитывая, что разность VTH — VTL мала, экспоненциальную характеристику заряда и разряда C1 аппроксимировать линейной зависимостью. Во время фазы заряда ток приблизительно равен (VOH-VIN)/3, поэтому:
Аналогично, во время фазы разряда можно считать, что ток равен VIN/3, и
Сопоставление двух уравнений дает
и коэффициент заполнения D равен
Можно видеть, что коэффициент заполнения прямо пропорционален VIN. При VIN = 0 В он равен 0%, а при VIN = VOH равен 100%. Более того, коэффициент заполнения по существу не зависит от номиналов компонентов, при соблюдении ограничения R2 >> R1( необходимого для того, чтобы гистерезис оставался небольшим. Обратная зависимость между коэффициентом заполнения и VOH может быть полезна в некоторых приложениях, поэтому VOH можно рассматривать как дополнительный вход. Выходная частота соответствует соотношению
достигая своего максимума при VIN = VOH/2.
Сравнительные испытания ШИМ схемы с КМОП компаратором TLC393 и биполярным LM393 показали, что с TLC393 схема лучше работает при низких входных напряжениях V,N благодаря более низкому уровню нуля на выходе. Не допускайте перегрузки выхода компаратора; используйте при необходимости буфер, поскольку нагрузка может ухудшать уровни выходных сигналов.