2 схемы

Usb Электронная Нагрузка Своими Руками

18.01.2019 17:572019-01-18T14:57:59.000Z

Прототип печатной платы за 2 доллара (любой цвет): https://jlcpcb.com
Архив проекта http://www.kit-shop.org/zip/emkakk.zip
Воруем у китайцев 4 https://www.youtube.com/watch?v=1z_VhYNfS2w Как производят платы на заводе https://www.youtube.com/watch?v=kHFdNY0SlZQ Как производят паяльные трафареты https://www.youtube.com/watch?v=Rfx4Ni_aOA0&t
USB нагрузка http://ali.pub/31lezi http://buyeasy.by/redirect/cpa/o/plj6exim0af0umoxvxk08cyc2hl6kpen/ IRFZ44 http://ali.pub/31lf64 http://buyeasy.by/redirect/cpa/o/plj6dv5vljyfp2bsocmrsrluf2ps59ej/ LM358 http://ali.pub/31lf30 http://buyeasy.by/redirect/cpa/o/plj6edkc20o16gtj3hcgb60udlnojezw/ Набор резисторов http://ali.pub/31lexr http://buyeasy.by/redirect/cpa/o/plj6g0f9kodd1925gc8hesh6718484fi/ Мое лабораторное оборудование Лабораторный блок питания http://ali.pub/2tmanr http://buyeasy.by/redirect/cpa/o/pgut0emyulke7qmjzhr2e4v7cwfazi6m/ Мультиметр 1 http://ali.pub/2tm7hm http://buyeasy.by/redirect/cpa/o/pgusgtp4q2d2zyy0kpffajgo1p3zlsv5/
Мультиметр 2 http://ali.pub/2tm7xk http://buyeasy.by/redirect/cpa/o/pgushfzsyim8tw3js4drme4896f75201/
Мультиметр 3 http://ali.pub/2tmcks http://buyeasy.by/redirect/cpa/o/pgutt2evz1nn9eqpyw6hv9w6v5gyoukv/
Мультиметр 4 http://ali.pub/2tm9qb http://buyeasy.by/redirect/cpa/o/pgustdqyllvoylaj96l3pebfl1a3sdce/
Токовые клещи http://ali.pub/2tm9yo http://buyeasy.by/redirect/cpa/o/pgusu7s27csmr6b731noppd74me3usw1/
Измеритель емкостей и индуктивности http://ali.pub/2tm945 http://buyeasy.by/redirect/cpa/o/pgusrt72ef7lmbg1emkc95fm7ts32qin/
Универсальный генератор сигналов http://ali.pub/2tmgij http://buyeasy.by/redirect/cpa/o/pguu888x4ov8u31du61088zn4y9p6rs7/
Осциллограф http://ali.pub/2tmb1d http://buyeasy.by/redirect/cpa/o/pgut1jb6px59qjgc0xi45ag54fqstywi/
Транзистор тестер http://ali.pub/2tma7t http://buyeasy.by/redirect/cpa/o/pguswkwm96b9k1465byjz3wzlnzjsee0/
Термометр http://ali.pub/2tm8sa http://buyeasy.by/redirect/cpa/o/pguspjkvjoclopht6lwqu8argyg28d67/
Частотомер http://ali.pub/2tmigc http://buyeasy.by/redirect/cpa/o/pguuigzkvwkis9waxxuaal3azhh7gtq7/
Электронная нагрузка http://ali.pub/2tmagy http://buyeasy.by/redirect/cpa/o/pguszjbf4fq9bppm79bxdwwea9w3esbc/
Интеллектуальный тестер микросхем http://ali.pub/2tmicu http://buyeasy.by/redirect/cpa/o/pguug84x0wiygwms2dyhfgoqsb9vtex2/
Паяльник http://ali.pub/2tmbm6 http://buyeasy.by/redirect/cpa/o/pgut72on83yaf81eb19g3nfp7x9mzgzk/
Микроскоп http://ali.pub/2tminc http://buyeasy.by/redirect/cpa/o/pguulswiso62yj6qy6v5jvcvy23n3x1x/
Заработать на Aliexpress
http://epngo.bz/epn_index/29c81
Вернуть 8.5% от покупок http://ali.pub/21o6mg Наши сайты
http://vip-cxema.org/ http://www.kit-shop.org/
Подписывайтесь на наши группы ВК
https://vk.com/club79283215 https://vk.com/club54960228
Мой второй канал https://www.youtube.com/channel/UCO9r0ovR_10Cgq8kOgnFl8Q
Мой инстаграм https://www.instagram.com/akakasyan/

Помощь в развитии проектов http://donatepay.ru/d/aka

Electronic Load Usb Load Usb Electronic Load Usb Нагрузка Своими Руками Схема Usb Электронной Нагрузки Usb Электронная Нагрузка Стабилизатор Тока Схема Стабилизатора Тока Стабилизатор Тока На Оу Стабилизатор Тока На Полевом Транзисторе Стабилизатор Тока На Lm358

Usb Электронная Нагрузка Своими Руками.

Корпус для активной нагрузки

Что касается коробки, то вот вариант, где корпус сделан на 3D принтере.

Только перемещен дисплей на переднюю панель с кнопками.

Нагрузка 10 A 60 В 150 Вт версии 2.27 в режиме разряда батареи до заданного порогового значения. Меню опций имеет предел отключения 10,8 В. В версии 2.27 меню построено таким образом, что произведение напряжения и тока не может быть установлено выше предела мощности. Например, если установим 10 А, максимальное напряжение будет 15 В. Однако когда установим 50 В, максимальный доступный ток разряда будет поставить невозможно больше, чем 3 А.

В старых версиях не было встроенного перерасчёта и приходилось считать самому, чтоб устройство не сгорело при включении. Нагрузка очень точная и простая в использовании.

Тем не менее, установлен медный радиатор бОльшего размера с вентилятором. Такая сборка от компьютера значительно снизила температуру управляющего транзистора и соответственно меньше шансов повредить его при работе на максимальной нагрузке. В настоящее время такая электронная нагрузка стоит около 25 долларов на Али.

Тут нагрузка подключена к аккумулятору с включенным пределом отсечки.

Через некоторое время напряжение отсечки исчезает, и текущая настройка (0,3 А) скачет, её можно изменить по время.

В левом нижнем положении поочередно отображается мощность потребляемая в Ваттах, количество энергии потребляемой в А/ч, температура в градусах и время.

При покупке стоит обратить внимание, есть ли на кулере наклейка с надписью Cooler Master — она указывает на оригинальный продукт. К сожалению, в последнее время появилось много подделок

Простейший ключ

В дальнейшем полевым транзистором мы будет называть конкретно MOSFET,
то есть полевые транзисторы с изолированным
затвором
(они же МОП, они же МДП). Они удобны тем, что управляются
исключительно напряжением: если напряжение на затворе больше
порогового, то транзистор открывается. При этом управляющий ток через
транзистор пока он открыт или закрыт не течёт. Это значительное
преимущество перед биполярными транзисторами, у которых ток течёт всё
время, пока открыт транзистор.

Также в дальнейшем мы будем использовать только n-канальные MOSFET
(даже для двухтактных схем). Это связано с тем, что n-канальные
транзисторы дешевле и имеют лучшие характеристики.

Простейшая схема ключа на MOSFET приведена ниже.

Опять же, нагрузка подключена «сверху», к стоку. Если подключить её
«снизу», то схема не будет работать. Дело в том, что транзистор
открывается, если напряжение между затвором и истоком превышает
пороговое. При подключении «снизу» нагрузка будет давать
дополнительное падение напряжения, и транзистор может не открыться или
открыться не полностью.

Несмотря на то, что MOSFET управляется только напряжением и ток через
затвор не идёт, затвор образует с подложкой паразитный
конденсатор. Когда транзистор открывается или закрывается, этот
конденсатор заряжается или разряжается через вход ключевой схемы. И
если этот вход подключен к push-pull выходу микросхемы, через неё
потечёт довольно большой ток, который может вывести её из строя.

При управлении типа push-pull схема разряда конденсатора образует,
фактически, RC-цепочку, в которой максимальный ток разряда будет равен

где — напряжение, которым управляется транзистор.

Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы
ограничить ток заряда — разряда до 10 мА. Но чем больше сопротивление
резистора, тем медленнее он будет открываться и закрываться, так как
постоянная времени увеличится

Это важно, если транзистор
часто переключается. Например, в ШИМ-регуляторе

Основные параметры, на которые следует обращать внимание — это
пороговое напряжение , максимальный ток через сток и
сопротивление сток — исток у открытого транзистора. Ниже приведена таблица с примерами характеристик МОП-транзисторов

Ниже приведена таблица с примерами характеристик МОП-транзисторов.

Модель
2N7000 3 В 200 мА 5 Ом
IRFZ44N 4 В 35 А 0,0175 Ом
IRF630 4 В 9 А 0,4 Ом
IRL2505 2 В 74 А 0,008 Ом

Для приведены максимальные значения. Дело в том, что у разных
транзисторов даже из одной партии этот параметр может сильно
отличаться. Но если максимальное значение равно, скажем, 3 В, то этот
транзистор гарантированно можно использовать в цифровых схемах с
напряжением питания 3,3 В или 5 В.

Сопротивление сток — исток у приведённых моделей транзисторов
достаточно маленькое, но следует помнить, что при больших напряжениях
управляемой нагрузки даже оно может привести к выделению значительной
мощности в виде тепла.

Режим постоянного сопротивления (CR).

В режиме постоянного сопротивления на электронной нагрузке устанавливается значение сопротивления, это означает, что через нагрузку будет протекать ток, линейно пропорциональный входному напряжению в соответствии с заданным сопротивлением. Схема замещения и график зависимости напряжение-ток приведены на рисунке 9.

Режим CR может использоваться для тестирования источников напряжении (тока) при определении предельно возможных (минимальных и максимальных) значений выдаваемого тока. На первый взгляд, при наличии режимов CV и CC, режим CR большого смысла не имеет, но это не так. На самом деле при использовании режима CC, при определении нагрузочной способности ИП на до быть предельно осторожным, особенно если тестированию подвергаются импульсные ИП. Например, импульсный ИП с выходными параметрами 5В и 50А не в состоянии обеспечить ток в нагрузке при напряжении 0…5В. Схема защиты от короткого замыкания определит режим электронной нагрузки CC как режим короткого замыкания и отключит источник питания от нагрузки, поскольку электронная нагрузка даже при напряжении 2В будет отбирать от источника питания ток 50А. Для этого случая оптимальным решением является режим CR, при котором ток в нагрузке нарастает пропорционально выводному напряжению. Схема защиты от короткого замыкания ИП в этом случае не будет отключать источник от нагрузки. После установления номинального выходного напряжения источника питания, электрону нагрузку можно перевести в режим CC для дальнейших тестов ИП. Графики этих процессов приведены на рисунке 10.

Очевидно, что не всегда удобно, во время тестирования ИП производить переключения из режима CR и CC. Для этого в профессиональных электронных нагрузках, с расширенными возможностями, в режиме CC существует дополнительная возможность регулировки скорость (крутизна) изменения тока. Скорость изменения тока – это величина изменения тока в нагрузке за единицу времени.  Скорость изменения выражается в Амперах в секунду. Скорость изменения тока может быть положительной, если ток увеличивается ли отрицательной, если ток в нагрузке уменьшается.  На рисунке 11 представлен график положительной крутизны изменения тока, поясняющий основные явления и параметры крутизны.

Величина крутизны изменения тока измеряется на уровне 10%-90% при нарастании тока и 90%-10% при уменьшении тока. Опорные уровни 10% и 90% определяются из условий начального и конечного установленных значений токов, а не из принципа максимально возможного значения тока.  Из рисунка 11 видно, что чем меньше скорость нарастания тока, тем более пологий фронт нарастания она имеет. Очевидно, что регулируемое значение скорости нарастания тока, для ранее приведённого случая тестирования ИП 5 В 50 А, вполне может полностью решить проблему срабатывания защиты короткого замыкания источника питания.

Электронные нагрузки АКИП серии 13хх имеют возможность установки различных значений крутизны изменения тока.  Например, для  нагрузки АКИП-1302 (напряжение 60 В, ток 60 А, мощность 300 Вт) крутизна имеет пределы 40 мА/мкс ….2.5 A/мкс. Для нагрузки  АКИП-1310 (напряжение 60 В, ток 360 А, мощность 1800 Вт) крутизна имеет пределы  24 мА/мкс….15 А/мкс.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.

Технические характеристики модуля

  • Напряжение питания: DC6 ~12 V / DC 5,0 Micro USB
  • Измерение напряжения: 0 ~ 200 В, точность: 0,05 В
  • Регулируемый диапазон тока: 0 ~ 20 A, точность: 0.05 A
  • Диапазон измерения емкости АКБ: 0 ~ 999.999 Ач, точность: 0.01 Ач
  • Диапазон накопительной мощности: 0 ~ 99999.9 Втч, точность: 0.01 Втч
  • Диапазон измерения мощности: 0 ~ 2999,99 Вт, точность: 0,01 Вт
  • Диапазон измерения сопротивления: 1 ~ 999,9 Ом, Точность: 0,01 Ом
  • Диапазон измерения температур: 0 ~ 99 градусов, точность: 1 градус
  • Вентилятор охлаждения автоматически стартует с тока > 0.5 A или температуры > 45 С
  • Вход/выход: 20 А винтовые клеммы + USB
  • Время обновления: > 500 мс
  • Скорость измерения: около 2 с
  • Перенапряжение и перегрузка по току есть оповещение и защита.

Стоимость менее 2000 рублей — не так уж и много. Параметры зато обнадеживающие, а именно: мощность 180 Вт, ток 20 А, напряжение 200 В. Можно предположить, что 99% источников питания могут быть нагружены этим.

Управление устройством — две кнопки / энкодера. На самом деле оказалось, что эти ручки являются потенциометрами для установки тока 0-20 А, где одна устанавливает его ​​грубо, а другая точно. Этот метод уже много лет используется в популярных китайских источниках питания. Все результаты измерения доступны на одном экране. Есть несколько на разных языках, и после первого запуска выбираем тот, который подходит лучше всего, он остается навсегда. Далее в меню есть опция установки зуммера для превышения напряжения или тока, как вверх, так и вниз, что будет полезно при тестовой разрядке аккумуляторных батарей.

Использование прибора сводится к подключению источника питания 12 В постоянного тока и подключению проверяемого блока питания. Есть несколько типов разъемов: обычные винтовые разъемы, типовая розетка питания и 4 типа USB — тип A / большой плоский / мини-USB, микро-USB и тип C. Кроме того, есть кабели с зажимами типа «крокодил» и дополнительный адаптер для крокодилов.

После подключения тестового БП устройство работает сразу, потенциометр устанавливает интересующий ток. На дисплее отображаются текущие параметры: напряжение, ток, текущая мощность, энергия, время и так далее. И даже температура с датчика. Параметры управляются кнопкой, так что можем измерить емкость аккумулятора.

На испытании удалось вытянуть 18,2 А из блока питания, что видно на фото. Система охлаждения работает отлично, оконечный транзистор имеет при работе максимальную температуру 40 градусов. Устройство работает реально хорошо и определенно стоит своей цены.

Но это было не всегда так красочно. До этого уже ремонтировалась похожая нагрузка. Сначала после подключения напряжения с током всего несколько ампер сгорел силовой транзистор. После снятия радиатора оказалось, что термопаста вообще отсутствует, а сам транзистор был припаян, поэтому он не касался радиатора идеально плоско. Первоначальный какой-то полевой транзистор из серии IRFP был установлен в корпусе TO-247, вроде IRFP450. Поскольку поверхность радиатора намного больше, чем у этого транзистора, возникла идея установить больший, в корпусе TO-264, как раз нашелся GT60M104. Этот транзистор подошел бы почти идеально, если бы не датчик температуры, который припаян на плате рядом с транзистором, и больший корпус перекрывался с этим датчиком примерно на миллиметр. Поэтому подшлифовал транзистор так, чтобы он поместился рядом с датчиком, конечно заполнил всё термопастой хорошего качества и после сборки радиатора уже работает отлично. После ремонта снял с устройства все 180 Вт, радиатор не достигает более 45 градусов, что кажется отличным результатом.

Это устройство продаётся без корпуса, в упаковке получаем то, что вы видите на фото, завернутое в пузырчатую пленку.

В общем это полезное по своим возможностям и дешевое устройство, которое называется активная загрузка или электронная загрузка на английском языке. Правда словосочетание «искусственная нагрузка» более привычно в нашей стране.

Тиристоры и симисторы

Тиристор
— это полупроводниковый прибор, который может находится в двух
состояниях:

  • открытом — пропускает ток, но только в одном направлении,
  • закрытом — не пропускает ток.

Так как тиристор пропускает ток только в одном направлении, для
включения и выключения нагрузки он подходит не очень хорошо. Половину
времени на каждый период переменного тока прибор простаивает. Тем не
менее, тиристор можно использовать в диммере. Там он может применяться
для управления мощностью, отсекая от волны питания кусочек требуемой
мощности.

Симистор — это, фактически двунаправленный тиристор. А значит он
позволяет пропускать не полуволны, а полную волну напряжения питания
нагрузки.

Открыть симистор (или тиристор) можно двумя способами:

  • подать (хотя бы кратковременно) отпирающий ток на управляющий электрод;
  • подать достаточно высокое напряжение на его «рабочие» электроды.

Второй способ нам не подходит, так как напряжение питания у нас будет
постоянной амплитуды.

После того, как симистор открылся, его можно закрыть поменяв
полярность или снизив ток через него то величины, меньшей чем так
называемый ток удержания. Но так как питание организовано переменным
током, это автоматически произойдёт по окончании полупериода.

При выборе симистора важно учесть величину тока удержания
(). Если взять мощный симистор с большим током удержания, ток
через нагрузку может оказаться слишком маленьким, и симистор просто не
откроется

Нагрузки на базе IRGS4062DPBF

Делается электронная нагрузка своими руками на базе этого транзистора довольно просто. Стандартная схема модели включает в себя два конденсаторных блока и один расширитель. Сразу стоит отметить, что модели этого класса хорошо подойдут для блоков питания на 10 А. Параметр напряжение у нагрузок равняется 200 Вт. Фильтры для устройств подбираются низкой частоты. Они способны работать при больших нагрузках.

В первую очередь при сборке устанавливается тиристор, а компаратор можно использовать разного типа. Непосредственно транзистор устанавливается при помощи паяльника. Если проводимость у него превышает 5 мк, то стоит устанавливать дипольный фильтр вначале цепи. Специалисты говорят о том, что электронная нагрузка на транзисторе IRGS4062DPBF может делаться с переходными компараторами. Однако у них высокий коэффициент рассеивания.

Также стоит отметить, что модели этой серии подходят только для цепей постоянного тока. Допустимый параметр перегрузки приборов равняется 5 А. Если рассматривать устройства на импульсных компараторах, то у них имеется масса преимуществ. В первую очередь в глаза бросается высокая частота. При этом сопротивление приборы показывают на уровне 50 Ом.

У них нет проблем с проводимостью и резкими скачками напряжения. Стабилизаторы разрешается применять разных типов. Однако они должны работать в цепи постоянного тока. Еще на рынке представлены модификации без конденсаторов. Коэффициент рассеивания у них равняется примерно 55%. Для устройств данного класса это очень мало.

Симисторный ключ

Для гальванической развязки цепей управления и питания лучше
использовать оптопару или специальный симисторный драйвер. Например,
MOC3023M или MOC3052.

Эти оптопары состоят из инфракрасного светодиода и фотосимистора. Этот
фотосимистор можно использовать для управления мощным симисторным
ключом.

В MOC3052 падение напряжения на светодиоде равно 3 В, а ток — 60 мА,
поэтому при подключении к микроконтроллеру, возможно, придётся
использовать дополнительный транзисторный ключ.

Встроенный симистор же рассчитан на напряжение до 600 В и ток до
1 А. Этого достаточно для управления мощными бытовыми приборами через
второй силовой симистор.

Рассмотрим схему управления резистивной нагрузкой (например, лампой
накаливания).

Таким образом, эта оптопара выступает в роли драйвера
симистора.

Существуют и драйверы с детектором нуля — например, MOC3061. Они
переключаются только в начале периода, что снижает помехи в
электросети.

Резисторы R1 и R2 рассчитываются как обычно. Сопротивление же
резистора R3 определяется исходя из пикового напряжения в сети питания
и отпирающего тока силового симистора. Если взять слишком большое —
симистор не откроется, слишком маленькое — ток будет течь
напрасно. Резистор может потребоваться мощный.

Нелишним будет напомнить, что 230 В в электросети (текущий стандарт для
России, Украины и многих других стран) — это значение
действующего напряжения. Пиковое напряжение равно .

USB нагрузка 1А и 2А с переключателем. USB резистор нагрузочный

Сейчас очень часто в различных источниках питания и зарядных устройствах используется USB разъем, подключаясь к которому пользователь должен быть уверен в соответствии параметров, выдаваемых тока и напряжения данным источником. Для проверки этих характеристик вместе с тестером и нужна USB нагрузка 1А и 2А с переключателем.

USB нагрузка выполнена в виде небольшой платы, на одном конце которой имеется USB разъем, на другом конце размещен переключатель для переключения режимов, а по середине размещены два резистора. Оба резистора имеют номинал 5 Ом.

Переключатель позволяет включить один резистор, что будет соответствовать потреблению тока в 1 А, и два резистора параллельно, после чего нагрузка будет потреблять 2 А. Включение того или иного режима сигнализируется соответствующим цветом светодиода. Зеленый – 1 А, красный – 2 А.

Купить USB нагрузка 1А и 2А с переключателем. Также у других продавцов здесь.

Резисторы, установленные на USB нагрузке, не рассчитаны на потребляемый ток.

Их номинал соответствует действительности в 5 Ом, но при протекании через них тока в 1 А они очень сильно греются, причем нагреваются до температуры, при которой к ним невозможно прикоснуться.

Применяется такая USB нагрузка с резисторами для тестирования параметров зарядных устройств для телефонов и различных повербанков.

Возможно Вас это заинтересует:
Весы электронные mh 500
USB тестер емкости
Невидимые ультрафиолетовые чернила
Шарики с лампочками

Для чего используются электронные нагрузки

Основная задача электронных нагрузок — это тестирование различных источников электропитания: аккумуляторов, батареек, блоков питания, преобразователей напряжения, регуляторов и стабилизаторов напряжения, солнечных батарей, генераторов и других подобных устройств. Для проведения тестирования, электронную нагрузку подключают к проверяемому источнику электропитания и запускают один или несколько тестов. При этом, электронная нагрузка ведёт себя как реальная нагрузка: например меняет своё сопротивление по заданному алгоритму, имитирует большие стартовые токи запуска, короткое замыкание и прочие заданные Вами условия. Во время проведения теста, электронная нагрузка непрерывно измеряет напряжение, ток и потребляемую мощность.

Примеры устройств, для проверки работы которых применяют электронные нагрузки.

Большинство электронных нагрузок содержат точный мультиметр, измеряющий напряжение, ток и мощность, потребляемую нагрузкой. Некоторые модели могут выполнять нормированный разряд аккумуляторов и батареек, измеряя реальную ёмкость элемента питания в Ампер-часах. Многие модели также могут управляться при помощи компьютера, что позволяет использовать их в составе автоматизированных контрольно-измерительных комплексов.

Задняя панель маломощной электронной нагрузки серии IT8800 с интерфейсными разъёмами для подключения к компьютеру.

Схема устройств для блоков на 20 А

Электронная нагрузка (схема показана ниже) для блоков на 20 А производится на базе двоичных резисторов. У них поддерживается стабильная высокая проводимость. Чувствительность при этом равняется примерно 6 мВ. Некоторые модификации выделяются высоким параметром перегрузки. Реле у моделей используются на волновых транзисторах. Для решения проблем с преобразованием используются компараторы. Расширители часто встречаются фазового типа. И у них может быть несколько переходников. При необходимости устройство можно собрать самостоятельно. Для этого применяется конденсаторный блок.

Номинальное напряжение у самодельных нагрузок стартует от 300 Вт, а частота в среднем составляет 400 кГц. Специалисты не советуют применять переходные компараторы. Регуляторы используются с обкладками. Для установки компаратора потребуется изолятор. Если рассматривать нагрузки на двух тиристорах, то там используются фильтры. В среднем емкость модуля равняется 3 пФ. Показатель рассеивания у самодельных моделей стартует от 50%

При сборке устройства особое внимание стоит уделять переходнику для подключения к блоку питания. Контакторы побираются полюсного типа

Они должны выдерживать большие перегрузки и не перегреваться.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector